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Abstract. The supersymmetric version of a topological quantum field theory describing flat
connections, the super BF theory, is studied in the superspace formalism. A set of observables
related to topological invariants is derived from the curvature of the superspace. Analogously
to the non-supersymmetric versions the theory exhibits a vector-like supersymmetry. The role
of the vector supersymmetry and an additional new symmetry of the action in the construction
of observables is explained.

1. Introduction

Topological field theories offer an intriguing possibility to combine ideas from physics and
mathematics. They are quantum field theories with no physical degrees of freedom and their
properties are fully determined by the global structure of the manifold they are defined on.
A remarkable feature is that for many topological theories, like the Donaldson theory [1]
and Chern–Simons (CS) theory, the expectation values of the observables are topological
invariants.

The Chern–Simons theory provides a three-dimensional interpretation of the theory of
knots: the correlators of its observables, Wilson loops, are related to the Jones polynomials
of knot theory [2]. Another important application of CS theory is(2 + 1)-dimensional
gravity. CS action with Poincaré group as the gauge group is the Einstein–Hilbert action
[3], giving a gauge theory interpretation of gravity in(2 + 1) dimensions. However, the
Chern–Simons theory is defined only in three dimensions. The generalization to arbitrary
dimensions [4, 5] are called BF models or antisymmetric tensor models. They, like the CS
theory, describe the moduli space of flat connections and their observables are related to the
linking and intersection numbers of manifolds. The supersymmetric BF theories (SBF) were
introduced in [6] as a supersymmetric version of(2 + 1)-dimensional topological gravity.
There it was also shown that the partition function of three-dimensional SBF computes a
topological invariant, the Casson invariant. Generalizations of SBF to other dimensions
were considered in [7] and [5, 8].

In this paper we study supersymmetric BF models. We are particularly interested in
finding new observables and possible topological invariants for 3d SBF theories, besides
the partition function. By formulating the theory in superspace a large set of observables,
including previously unknown ones, can be derived from the superspace curvature. In
[9] a vector-like supersymmetry similar to that found in ordinary BF models and Chern–
Simons theory [10, 11] was constructed for the SBF models. In particular, the hierarchy of
observables constructed from the supercurvature can be derived from one initial observable
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with the help of the vector supersymmetry. Using the superspace formulation we extend
this construction to include also the anti-BRST and anti-vector supersymmetries, in addition
to the usual BRST and vector supersymmetries.

This paper is organized as follows: in section 2 we will introduce the model and write
it in the superspace. It turns out that in the superspace formalism many features of the
CS theory can be generalized directly to SBF theory. In section 3 we derive the set of
observables and discuss their relation to topological invariants. In section 4 we generalize
the vector supersymmetry to SBF and show how it can be used to construct new observables.

2. Supersymmetric BF theories

The classical action or non-supersymmetric BF model ind dimensions is

S0 =
∫

ddx B0
nFA (1)

whereB0
n is a n = d − 2 form (with ghost number zero) andFA is the curvature 2-form

FA = dA+ 1
2[A,A]. In addition to the normal Yang–Mills gauge symmetryA → A+dAω0,

the action is invariant under the transformationBn → Bn + dAωn−1 caused by the Bianchi
identity. In dimensions higher than three this symmetry is reducible:

ωn−1 → dAωn−2 etc

and additional ghost fields are needed in order to fix the gauge according to the Batalin–
Vilkovisky procedure.

In three dimensions the BF theory is closely related to Chern–Simons theory: the CS
theory for the tangent groupTG ' (G, g) is equivalent to the BF theory forG [12]. In
TG the Chern–Simons connection 1-form splits into two partsA andB, the basic fields
of the BF theory. This makes it possible to construct the classical action of BF theories,
find the BRST transformations and fix the gauge easily by studying the CS theory for the
tangent group.

For the supersymmetric extension of the three-dimensional BF model the situation is
quite similar—the action and many properties of the theory can be expressed in terms of
super CS theory. This is done elegantly by formulating the theory in superspace with
two anticommuting Grassmannian coordinatesθ , θ̄ in addition to the normal spacetime
coordinatesxµ. Here we will mainly concentrate in the three-dimensional case but with
slight modifications the method is suited for SBF models in other dimensions.

The integration over the Grassmannian variables is normalized as

∫
dθ̄ dθ


1
θ

θ̄

θ θ̄

 =


0
0
0
1

 . (2)

If the coordinatesθ and θ̄ are associated with ghost numbers−1 and 1 the superspace
connection 1-formÂ in (3 + 2) dimensions is written†

Â = Â0
µ dxµ + Â1

θ dθ + Â−1
θ̄

dθ̄ (3)

† Note that we will use graded differential formsXqp with ordinary form degreep and ghost numberq. Two
graded forms satisfyXqpY rs = (−1)(q+p)(r+s)Y rs X

q
p . All the commutators should also be considered as graded.
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where the superfieldŝA0
µ dxµ, Â1

θ andÂ−1
θ̄

can be further expanded as

Â0
µ = Aµ − θψµ + θ̄χµ + θ θ̄Bµ

Â1
θ = c − θφ + θ̄ρ + θ θ̄η

Â−1
θ̄

= η̄ − θρ̄ − θ̄ φ̄ + θ θ̄ c̄.

The components can be identified with the fields of three-dimensional super BF theory:ψ1
µ

andχ−1
µ are the superpartners of the connectionA0

µ and fieldB0
µ, while ρ0

0, ρ̄
0
0 andφ2

0, φ̄
−2
0

are their corresponding ghosts and antighosts. With these definitions the classical action of
the SBF model can be written as the action of the super CS theory:

Scl =
∫

d3x(BFA − χ dAψ) = 1

2

∫
d3x d2θ(Âd̂Â + 2

3Â[Â, Â]). (4)

To obtain the quantum action one has to fix the gauge symmetryÂ0 → Â0 + dÂ0ω by
adding to the action a BRST exact gauge fixing term.

The BRST transformations of the fields can be derived from the superspace curvature
2-form using a method similar to that of [8, 9, 13–16] for Donaldson theory and Witten-type
topological theories. However, because of theN = 2 superspace with two anticommuting
coordinates of opposite ghost numbers we can extend this method to also include the anti-
BRST symmetry. We define the superspace curvature as

F̂ = (dxµ∂µ + dθδ + dθ̄ δ̄)Â + 1
2[Â, Â] (5)

and impose the ‘horizontality condition’

F̂ ≡ F̂µν dxµ dxν − (dθ∂θ + dθ̄∂θ̄ )Â (6)

which truncates the curvature to the physical part independent of dθ and d̄θ (and
consequently of the ghost fields), and identifies the BRST operatorδ with ∂θ and δ̄ with ∂θ̄ .
This gives the BRST transformations for the component fields:

δA = −dAc + ψ δB = −dAη − [c, B] + [φ, χ ] + [ψ, ρ]

δc = − 1
2[c, c] + φ δη = −[c, η] + [φ, ρ]

δψ = −dAφ − [c, ψ ] δχ = −dAρ − [c, χ ] + B

δφ = −[c, φ] δρ = −[c, ρ] + η

(7)

which have to be supplemented with the transformations of the antighosts and Lagrange
multipliers λ0

0, b
0
0, β

−1
0 andσ 1

0 for the gauge fixing conditions of the fieldsA,B,ψ andχ .
The Lagrange multipliers can be combined into a superfield

3̂0
0 = λ− θσ − θ̄β + θ θ̄b. (8)

The simplest choice for the BRST transformations would be

δÂ−1
0 = −3̂ δ3̂ = 0

but with suitable field redefinitions these can be put into a form which will be more
convenient later:

δc̄ = −b δη̄ = −λ− [c, η̄] + ρ̄

δb = 0 δλ = −[c, λ] − [φ, η̄] − σ

δφ̄ = β − c̄ δρ̄ = σ − [c, ρ̄]

δβ = −b δσ = −[c, σ ] + [φ, ρ̄].

(9)
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The gauge fixing part of the supersymmetric action is chosen to be

Sgf =
∫

d2θ δ(Â−1
θ̄

d ∗ Â0)

=
∫

d3x (−bd ∗ A− λd ∗ B + βd ∗ ψ + σd ∗ χ + c̄d ∗ dAc + η̄d ∗ dAη (10)

+φ̄d ∗ dAφ + ρ̄d ∗ dAρ − η̄[dc, ∗B] + η̄d[φ, ∗χ ]

−η̄d[ρ, ∗ψ ] + ρ̄[dc, ∗χ ] + φ̄d[c, ∗ψ ]).

Note also that unlike in the ordinary BF model the classical action (4) is now BRST exact:

Scl =
∫

d3x δ(χFA).

This shows that the supersymmetric BF model is a Witten-type topological theory with a
δ-exact action, whereas the ordinary non-Abelian BF models are Schwartz-type theories
[12].

The gauge fixing termSgf = ∫
d2θ δ(Â−1

θ̄
d ∗ Â0) is formally similar to that of Chern–

Simons theory quantized in the Landau gauge d∗ A = 0:

SCS
gf =

∫
d3x (δC̄d ∗ A).

In CS theory the BRST and anti-BRST operators are related by the transformation obtained
by integrating the quantum action by parts [17]

SCS
q =

∫
d3x (AdA + 2

3A[A,A] −3d ∗ A − C̄d ∗ dAC).

The integrated action is equivalent to the original action after a change of fields which
leaves the connectionA unchanged but takes the ghostsC to the antighosts̄C and C̄ to −C.
The Lagrange multiplier field3 transforms as3 → 3− [C, C̄]. This transformation of the
fields mapsδ to δ̄.

For the super CS and consequently for the three-dimensional SBF theory the situation
is again analogous. Integrating the gauge fixed quantum actionSq = Scl + Sgf (4) and
(10) by parts we find the superspace version of the transformation which relates BRST and
anti-BRST operators. In superspace language the transformation rules can be expressed
compactly by demanding that under the ‘conjugation’ of the Grassmann variables

θ → θ̄ θ̄ → −θ (11)

the total superspace connectionÂ stays the same while the operators change asδ → δ̄, δ̄ →
−δ. The transformations for the Lagrange multipliers are somewhat more complicated

λ → λ+ [c, η̄] b → b − [c, c̄] − [η, η̄] − [ρ, ρ̄] − [φ, φ̄]

σ → β + [c, φ̄] β → −σ + [φ, η̄].
(12)

For BF theories in dimensions other than three the situation is slightly more complicated
because theA andB fields cannot be combined into one connection. Ind dimensionsB
is a (d − 2)-form and additional fields will be needed to take care of the reducibility. It is,
however, possible to use truncated fields and write the components ofÂ as

Â0
µ = Aµ − θψµ

Â1
θ = c − θφ

Â−1
θ̄

= −θ̄ φ̄ + θ θ̄ c̄ (13)
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and similarly for the(d − 2) superform(B̂), which now contains in addition toB, χ and
their ghosts also the whole tower of ghosts for ghosts from the Batalin–Vilkovisky gauge
fixing. The curvature of theB sector is defined as

R̂ = (dxµ ∂µ + dθ δ)B̂ + [Â, B̂]. (14)

It satisfies a Bianchi identity, and again after imposing the horizontality condition similar
to (6) it reproduces the correct nilpotent BRST transformations. Since theA andB sectors
do not appear symmetrically in the action there exists no partial integration symmetry and
thus no anti-BRST operator̄δ.

3. Observables

In order to establish that the observables of the theory are indeed topological invariants
it must be checked that they are BRST closed, their expectation values do not depend on
variations of the metric and, if they are integrals of some local functionals, that their BRST
cohomology depends only on the homology class of the integration contour. The partition
function of the three-dimensional SBF model

Z3d =
∫

eiSq

obviously satisfies all the requirements and can be shown to equal the Casson invariant of
the manifold [6, 18]. We will now derive a set of other observables for 3d SBF from the
superspace curvature (5) and see if they too could correspond to topological invariants.

The Bianchi identity

(dxµ ∂µ + dθ δ + dθ̄ δ̄)F̂ + [Â, F̂ ] = 0 (15)

guarantees that the powers ofF̂ obey

(dxµ ∂µ + dθ δ + dθ̄ δ̄)Tr F̂n = 0. (16)

The simplest one is the superspace 4-formF̂2. It can be expanded in powers of dθ and d̄θ :

1
2 Tr F̂2 =

∑
i,j ;i+j64

Wi,jdθ idθ̄
j
. (17)

Equation (16) gives

dWi,j + δWi−1,j + δ̄W i,j−1 = 0. (18)

When j = 0 the integrals of the(4 − i)-form Wi,0 over a (4 − i) cocycleγ are BRST
closed:∫
γ

dWi,0 + δ

∫
γ

W i−1,0 =
∫
∂γ

W i,0 + δ

∫
γ

W i−1,0 = δ

∫
γ

W i−1,0 = 0. (19)

Because of (18) the BRST cohomology of
∫
W depends only on the homology class ofγ ,

making the vacuum expectation values and correlation functions of
∫
W good candidates

for topological invariants. Note that because of the symmetry of the three-dimensional
action (4) and (10) under the partial integration transformation the expectation values of
any observableO and its ‘conjugate’O are the same. This can be seen by making a
change of variables (with a unit Jacobian) in the path integral taking all the fields to their
conjugates and using the invariance of the action. The conditionδO = 0 changes under
this transformation tōδO = 0. Therefore, objects that are eitherδ- or δ̄-closed qualify as

observables of 3d SBF. In particular, we can thus identifyW
i,j = (−1)jWj,i .
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The expansion ofF̂2 gives using (6)

W 00 = 1
2F

2

W 10 = ψF − θ̄ (BF − χ dAψ)
W 20 = 1

2ψ
2 + φF + θ(φ dAψ)− θ̄ (ψB + φ dAχ + Fη)+ θ θ̄(φ dAB − φ[ψ, χ ] + dAψη)

W 30 = ψφ − θ̄ (φB + ψη)

W 40 = 1
2φ

2 − θ̄ (φη) (20)

from which we can extract 11 observables. The previously unknown ones are theθ and
θθ̄ , components ofW 20. They are particular to three-dimensional theories and they are
unlike the others, which, or rather their generalizations involving all the Batalin–Vilkovisky
ghosts, can be obtained from the truncated supercurvaturesF̂ andR̂ of A andB sectors in
all dimensions. Nevertheless, theθ component ofW 20 seems to be BRST closed also in
higher dimensions: the ghosts for ghosts and other fields appear only in the transformations
for theB sector.

Interestingly, some of the observables above are formally the same as for Donaldson
theory. This is no surprise since the BRST structure of Donaldson theory is similar to
that of theA sector of the SBF. In fact, the SBF can be thought of as a reduction of the
Donaldson theory to three dimensions [13, 16].

As a characteristic for the Witten-type topological theories, the expectation values of
the observables

〈O〉 =
∫

[dX]O ei/g2Sq (21)

are independent of the couplingg2. The integral can be calculated in theg2 → 0 limit
where it localizes to the classical equations of motion

FA = 0 dAψ = 0 dAB − [ψ, χ ] = 0 dAχ = 0 (22)

i.e. it is now calculated over the moduli space of flat connectionsM. In the limit g2 → 0 the
fields in (20) are replaced by their classical values (22). Then the non-vanishing observables
are

ω4
0 = 1

2φ
2

ω3
0 = φη

ω3
1 =

∫
ψφ

ω2
1 =

∫
ψη + Bφ

ω2
2 = 1

2

∫
ψ2

ω1
2 =

∫
ψB.

(23)

To evaluate the expectation values one has to take care of the zero modes of the fermions.
In particular, in dimensions higher than two the zero-modes of the other fields complicate
matters considerably. We will not perform the calculations here but refer the reader to [12]
and references therein for discussions on topological invariants of the Donaldson theory.
The considerations there are quite similar to those for the observablesω4

0, ω
3
1 andω2

2 of the
A sector of SBF. The invariant corresponding toω2

2 has been evaluated in [12] for 2d BF
and found to be the symplectic volume of the moduli space. Its products withω4

0 produce
linking and intersection numbers of moduli spaces.

4. Vector supersymmetry and the tower of observables

A peculiar feature of Chern–Simons and BF theories is a vector-like supersymmetry of
the action [11]. This gives rise to new Ward identities which have been utilized in
proving the theories to be finite, renormalizable and free of anomalies [10, 11, 19–21]. This
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supersymmetry depends explicitly on the metric so it is not clear whether it can be used
if the space is not flat. However, the finiteness of the CS theory on asymptotically free
manifolds has been proven in [22] by using a local version of the vector supersymmetry.
Also because the theories are topological one might argue that their physical quantities are
not dependent on the metric of the manifold. In any case, the vector supersymmetry has
been established as a common feature of many topological theories [9] and a useful tool, not
only in the study of renormalization and related topics but also in finding new observables.

The vector supersymmetry for non-supersymmetric CS theory quantized in the Landau
gauge is generated by an operators with ghost number and form degree 1,

sA = ∗dC sC = 0

sC̄ = A s3 = −δA (24)

or written in the component form

s = sα dxα ∗ dC = −εµαβ∂βC dxµ dxα.

Using the partial integration for the CS theory one can obtain the anti-supersymmetrys̄:

s̄A = ∗dC̄ s̄C̄ = 0

s̄C = −A s̄3 = −δ̄A − [A, C̄].
(25)

The anticommutation relations of the operatorsδ, δ̄ ands, s̄ are

[sα, sβ ] = [s̄α, s̄β ] = [δ, δ̄] = [sα, s̄β ] = [δ, sα] = [δ̄, s̄α] = 0 (26)

[δ, s̄α] = −[δ̄, sα] = ∂α + terms vanishing modulo the equations of motion.

Together with the BRST operatorsδ and δ̄, the operatorss and s̄ can be combined to form
a generator ofN = 2 supersymmetry algebra [9, 11, 17]. The vector supersymmetries can
also be formulated for the non-supersymmetric BF theories. In dimensions other than three
there exists no vector supersymmetrys but thes̄ operator can still be constructed [10, 20].

The anti-vector supersymmetry can be generalized to the supersymmetric BF theory in
arbitrary dimensions. In 3d it can be derived easily using (25) for the superfieldsÂ0, Â1

θ , Â
−1
θ̄

and3̂:

s̄αAµ = −εµαβ∂βη̄ s̄αB = −εµαβ∂β c̄
s̄αc = Aα s̄αη = Bα

s̄αc̄ = 0 s̄αη̄ = 0

s̄αb = −∂αc̄ s̄αλ = Dαη̄

s̄αψµ = εµαβ∂
βρ̄ s̄αχ = εµαβ∂

βφ̄

s̄αφ = −ψα s̄αρ = −χα
s̄αφ̄ = 0 s̄αρ̄ = 0

s̄αβ = ∂αφ̄ s̄ασ = Dαρ̄.

(27)

This is a symmetry of the quantum action (4) and (10) and satisfies the anticommutation
relations (26) with the BRST operator (7) and (9). The analysis performed on
the renormalization, finiteness and anomalies of ordinary BF theories using vector
supersymmetry can thus be applied directly to the supersymmetric BF theories.

It is interesting to note that the vector supersymmetry of the SBF can also be useful
in constructing new observables (see [9] for a slightly different approach). Whenever there
exists a BRST closed objectω, s̄ω is also BRST closed as a result of the anticommutation
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relations (26). So in principle it is possible to find an observable, likeω4
0 andω3

0, and apply
s̄α successively to obtain new ones. Also, since

ω4
0 = 1

2δ(cφ − 1
6c[c, c]) ω3

0 = 1
2δ(φρ + cη − 1

2ρ[c, c]) = δ(φρ) (28)

all observables obtained by acting withs̄ are in fact BRST exact—modulo equations of
motion and surface terms. This is valid only locally and does not mean that the observables
should be trivial.

From (20) we see that modifying slightly the antisupersymmetry transformations forψ

andB in (27) as

s̄B = ∗dc̄ − 2dAχ s̄ψ = − ∗ dρ̄ − 2F

and leaving the others intact the antisupersymmetry still remains a symmetry of the action.
By denoting the metric independent part of the modifieds̄ operator byv̄,

v̄B = −2dAχ v̄η = −B v̄ρ = −χ
(29)

v̄ψ = −2F v̄c = −A v̄φ = −ψ
and applying successively(1/k!)(−v̄)k to 1

2φ
2 and φη it is possible to derive all the

observables in (20), except theθ and θ θ̄ components ofW 02. The symmetryv̄ acts as
a vertical (in the direction of the form degree) transformation along the componentsWij of
the supersurvature (5).

It is easily seen that a horizontal (ghost number direction) transformationh̄ can also be
defined:

h̄A = χ h̄c = −ρ
h̄ψ = −B h̄φ = −η
h̄η̄ = −φ̄ h̄ρ̄ = −c̄.

(30)

This is a symmetry of the action and commutes with the BRST operator. It thus allows us
to construct all possible observables starting from the element1

2φ
2 of highest ghost number

and lowest form degree—again excluding theθ andθ θ̄ components ofW 20.
The vertical transformation has geometrical interpretation as the equivariant derivative

of the BRST model acting on the curvature of the universal bundle over the space of
gauge connections [23], which can be identified with the supercurvatureF̂ . Therefore,
the vertical transformation can be defined for all Witten-type topological theories. The
horizontal transformation̄h which can be constructed only in three dimensions is in fact
part of the anti-BRST operator−δ: only those terms that are not composites of fields and
do not contain Lagrange multipliers are included.

Acting onφ2 with the total vector supersymmetry transformations̄ instead of the vertical
transformation we obtain an even larger set of observables. In addition to those present
in (20) these include observables that depend explicitly on the metric. Since we already
know that the observables in (20) are BRST closed, the metric dependent ones should
also be closed separately. Moreover, it can be shown that the metric variations of these
observables can be written as BRST exact terms, a necessary requirement for the observables
to be topological invariants [12]. So we can conclude that the expectation values of these
observables are of topological nature.

5. Conclusions

We have studied three-dimensional supersymmetric BF theories using the superspace
formalism. This has proved to be a powerful method for studying the properties of the theory
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and especially for finding new symmetries and observables. The superspace curvature gives
rise to a hierarchy of observables, which could be derived starting from one initial observable
using the two transformations we constructed. The transformations have a geometrical
interpretation as vertical and horizontal transformations acting on the components of the
supercurvature, and can be identified as parts of more general symmetries of the action, the
vector supersymmetry and anti-BRST symmetry.
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